Abstract
In recent years, decentralized social networks have gained increasing attention, where each client maintains a local view of a social graph. To provide services based on graph learning in such networks, the server commonly needs to collect the local views of the graph structure, which raises privacy issues. In this paper, we focus on learning graph neural networks (GNNs) on decentralized social graphs while satisfying local differential privacy (LDP). Most existing methods collect high-dimensional local views under LDP through Randomized Response, which introduces a large amount of noise and significantly decreases the usability of the collected graph structure for training GNNs. To address this problem, we present Structure Learning-based Locally Private Graph Learning (SL-LPGL). Its main idea is to first collect low-dimensional encoded structural information called cluster degree vectors to reduce the amount of LDP noise, then learn a high-dimensional graph structure from the cluster degree vectors via graph structure learning (GSL) to train GNNs. In SL-LPGL, we propose a Homophily-aware Graph StructurE Initialization (HAGEI) method to provide a low-noise initial graph structure as learning guidance for GSL. We then introduce an Estimated Average Degree Vector Enhanced Graph Structure Learning (EADEGSL) method to further mitigate the negative impact of LDP noise in GSL. We conduct experiments on four real-world graph datasets. The experimental results demonstrate that SL-LPGL outperforms the baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.