Abstract

The extraordinary transmission spectrum of a copper film pierced by a periodic array of subwavelength rectangular holes is measured by the terahertz time-domain spectroscopy. The transmission coefficient is strongly dependent on the angle between the polarization of terahertz electric field and the latitudinal direction of the periodic apertures. When the angle increases from 0 o to 90 o, a peak becomes stronger and another peak reduces. The transmission is proposed to be the contributions of localized surface plasmons inside the apertures. The finite-difference-time-domain (FDTD) simulation results are in good agreement with experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.