Abstract

The anti-CD20 mAb, rituximab, is routinely used to treat B cell malignancies. However, a majority of patients relapse. An improvement in the complete response was obtained by combining rituximab with chemotherapy, at the cost of increased toxicity. We reported that rituximab induced the colocalization of both the Orai1 Ca(2+) release-activated Ca(2+) channel (CRAC) and the endoplasmic reticulum Ca(2+) sensor stromal interaction molecule 1 with CD20 and CD95 into a cluster, eliciting a polarized store-operated Ca(2+) entry (SOCE). We observed that blocking this Ca(2+) entry with downregulation of Orai1, pharmacological inhibitors, or reducing calcemia with hypocalcemic drugs sensitized human B lymphoma cell lines and primary human lymphoma cells to rituximab-induced apoptosis in vitro, and improved the antitumoral effect of rituximab in xenografted mice. This revealed that Ca(2+) entry exerted a negative feedback loop on rituximab-induced apoptosis, suggesting that associating CRAC channel inhibitors or hypocalcemic agents with rituximab may improve the treatment of patients with B cell malignancies. The calcium-dependent proteins involved in this process appear to vary according to the B lymphoma cell type, suggesting that CRAC-channel targeting is likely to be more efficient than calcium-dependent protein targeting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.