Abstract

Current nonorthogonal configuration interaction (NOCI) methods often use a set of self-consistent field (SCF) states selected based on chemical intuition. However, it may be challenging to track these SCF states across a dissociation profile and the NOCI states recovered may be spin contaminated. In this Article, we propose a method of applying spin rotation on symmetry broken unrestricted Hartree-Fock (sb-UHF) states to generate a basis for NOCI. The dissociation of ethene was examined by localizing spin rotation on each resulting carbene fragment. We show that this gives a size-consistent description of its dissociation and results in spin-pure states at all geometries. The dissociation was also studied with different orbitals, namely, canonical UHF and absolutely localized molecular orbitals (ALMO). Furthermore, we demonstrate that the method can be used to restore spin symmetry of symmetry broken SCF wave functions for molecules of various sizes, marking an improvement over existing NOCI methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.