Abstract

This paper addresses issues for tracking and monitoring continuous objects, such as poison gas, biochemical, and chemical liquid in wireless sensor networks. These continuous objects are quite different from the individual objects, such as people, animals, and vehicles in that they are continuously distributed across a region and usually occupy a large area. Accordingly, they are detected and sensed by many sensor nodes, and their sensing data are redundant and highly correlated. Hence, there needs any efficient scheme on collecting and aggregating locally their sensing data and generating the data report. The continuous objects also tend to diffuse, changes in shape, increases the size, even splits into multiple smaller continuous objects, or join together one continuous object. Accordingly, there also need any efficient scheme to manage efficiently the dynamic change of shape of the continuous objects. Therefore, we introduce Dynamic Rectangle Zone-based Collaboration Mechanism for detecting, tracking, and monitoring the continuous objects taking into account the dynamic change of their shape. The proposed mechanism constructs a dynamic rectangle zone included the area occupied by one continuous object. One center node in the zone collects and aggregates the sensing data from sensor nodes which detect the continuous object. The dynamic rectangle zone change newly according to dynamic change of the continuous object and the center node is also altered by another node to minimize the energy consumption for collecting the sensing data. Through simulation results, we also evaluate how environmental factors and control parameters affect the performance of the proposed mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.