Abstract

Direct-write methods, such as the Aerosol Jet® technology, have enabled fabrication of flexible multifunctional 3-D devices by printing electronic circuits on thermoplastic and thermoset polymer materials. Conductive traces printed by additive manufacturing typically start in the form of liquid metal nanoparticle inks. To produce functional circuits, the printed metal nanoparticle ink material must be postprocessed to form conductive metal by sintering at elevated temperature. Metal nanoparticles are widely used in conductive inks because they can be sintered at relatively low temperatures compared with the melting temperature of bulk metal. This is desirable for fabricating circuits on low-cost plastic substrates. To minimize thermal damage to the plastics, while effectively sintering the metal nanoparticle inks, we describe a laser sintering process that generates a localized heat-affected zone (HAZ) when scanning over a printed feature. For sintering metal nanoparticles that are reactive to oxygen, an inert or reducing gas shroud is applied around the laser spot to shield the HAZ from ambient oxygen. With the shroud gas-shielded laser, oxygen-sensitive nanoparticles, such as those made of copper and nickel, can be successfully sintered in open air. With very short heating time and small HAZ, the localized peak sintering temperature can be substantially higher than that of damage threshold for the underlying substrate, for effective metallization of nanoparticle inks. Here, we demonstrate capabilities for producing conductive tracks of silver, copper, and copper–nickel alloys on flexible films as well as fabricating functional thermocouples and strain gauge sensors, with printed metal nanoparticle inks sintered by shroud-gas-shielded laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.