Abstract

Nanostructured metal films comprised of periodically arranged spherical voids are grown by electrochemical deposition through a self-assembled template. Detailed measurements of the angle- and orientation-dependent reflectivity for different sample geometries reveal the spectral dispersion of several different types of surface plasmon modes. The dependence of the energies of both delocalized Bragg and localized Mie plasmons on the void goemetry is presented, along with theoretical models to explain some of these experimental findings. Strong interactions between the different plasmon modes as well as other mixing processes are identified. Understanding such plasmonic crystals allows for the engineering of devices tailored for a wide range of sensing application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.