Abstract
We study a sub monolayer He-4 adsorbed on fluorographene (GF) and on hexagonal boron nitride (hBN) at low coverage. The adsorption potentials have been computed ab-initio with a suitable density functional theory including dispersion forces. The properties of the adsorbed He-4 atoms have been computed at finite temperature with path integral Monte Carlo and at T=0 K with variational path integral. From both methods we find that the lowest energy state of He-4 on GF is a superfluid. Due to the very large corrugation of the adsorption potential this superfluid has a very strong spatial anisotropy, the ratio between the largest and smallest areal density being about 6, the superfluid fraction at the lowest T is about 55%, and the temperature of the transition to the normal state is in the range 0.5-1 K. Thus, GF offers a platform for studying the properties of a strongly interacting highly anisotropic bosonic superfluid. At a larger coverage He-4 has a transition to an ordered commensurate state with occupation of 1/6 of the adsorption sites. This phase is stable up to a transition temperature located between 0.5 and 1~K. The system has a triangular order similar to that of He-4 on graphite. The lowest energy state of He-4 on hBN is an ordered commensurate state with occupation of 1/3 of the adsorption sites and triangular symmetry. A disordered state is present at lower coverage as a metastable state. In the presence of an electric field the corrugation of the adsorption potential is slightly increased but up to a magnitude of 1 V/Ang. the effect is small and does not change the stability of the phases of He-4 on GF and hBN. We have verified that also in the case of graphene such electric field does not modify the stability of the commensurate sqrt{3}*sqrt{3}R30 phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.