Abstract

We study the localization properties of normal modes in harmonic chains with mass and spring weak disorder. Using a perturbative approach, an expression for the localization length L_{loc} is obtained, which is valid for arbitrary correlations of the disorder (mass disorder correlations, spring disorder correlations, and mass-spring disorder correlations are allowed), and for practically the whole frequency band. In addition, we show how to generate effective mobility edges by the use of disorder with long range self-correlations and cross-correlations. The transport of phonons is also analyzed, showing effective transparent windows that can be manipulated through the disorder correlations even for relative short chain sizes. These results are connected to the problem of heat conduction in the harmonic chain; indeed, we discuss the size scaling of the thermal conductivity from the perturbative expression of L_{loc}. Our results may have applications in modulating thermal transport, particularly in the design of thermal filters or in manufacturing high-thermal-conductivity materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.