Abstract

The co-chaperone p23 forms a complex with the chaperone Hsp90 that mediates the folding pathway leading to the production of functional steroid receptors. Solution NMR spectroscopy has been used to characterize sites of interaction between Hsp90 and p23. Titration of p23 with Hsp90 results in the selective broadening of certain cross-peaks in the 15N-1H heteronuclear single quantum correlation (HSQC) spectrum. The interaction sites on p23 and Hsp90 have been localized by dissection of Hsp90 into single-domain and two-domain constructs. The N-terminal (N) domain of Hsp90 does not affect the NMR spectrum of p23 either in the presence or absence of the ATP analogue ATPgammaS. Similarly, the HSQC spectrum of 15N-labeled N domain is unperturbed by the addition of p23. A subset of cross-peaks in the HSQC spectrum of p23 is shifted upon addition of the middle (M) domain of Hsp90, and the same shifts are observed upon the addition of the two-domain construct containing the N and M domains (NM). The addition of the co-chaperone Aha1, which is known to bind to the M domain of Hsp90, displaces p23 from Hsp90. The resonances that shift upon addition of the M and NM Hsp90 constructs correspond to those that were broadened at the lowest ratios of full-length Hsp90 to p23 and define an Hsp90 binding site that includes much of the C-terminal sequence of p23 together with a contiguous beta-hairpin from the N terminus. We conclude that p23 forms a specific complex with Hsp90 primarily through binding to its middle domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.