Abstract

This study aims at the robust automatic detection of buildings with a gable roof in varying rural areas from very-high-resolution aerial images. The originality of our approach resides in a custom-made design extracting key features close to modeling, such as e.g. roof ridges and gutters. In this way, we allow a large freedom in roof appearances. The proposed method is based on a combination of two hypotheses. First, it exploits the physical properties of gable roofs and detects straight line-segments within non-vegetated and non-farmland areas, as possibilities of occurring roof-ridges. Second, for each of these candidate roof-ridges, the likely roof-gutter positions are estimated for both sides of the line segment, resulting in a set of possible roof configurations. These hypotheses are validated based on the analysis of size, shadow, color and edge information, where for each roof-ridge candidate the optimal configuration is selected. Roof configurations with unlikely properties are rejected and afterwards ridges with overlapping configurations are fused. Experiments conducted on a set of 200 images covering various rural regions, with a large variation in both building appearance and surroundings, show that the algorithm is able to detect 75% of the buildings with a precision of 69.4%. We consider this as a reasonably good result, since the computing is fully unconstrained, numerous buildings were occluded by trees and because there is a significant appearance difference between the considered test images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.