Abstract

This paper describes a mathematical formulation for the efficient localization of 3D surfaces including free‐form surfaces and flat surfaces. An important application of this paper is to register flat surface calculated from unfolding process with a curved surface extracted from ship CAD prior to the multipoint press forming works. The mathematical formulation handles the registration and comparison of two free surfaces represented by sparse points based on the iterative closest point (ICP) algorithm and localization that can be applicable to ship‐hull plate forming. The ICP algorithm gives an adequate set of initial translation and rotation for surface objects with little correspondence through the minimization of mean square distance metric. Comparison of surfaces is explained in order to determine a corresponding set which gives the optimized press stroke between unfold surface and referential object surface. It thereby allows the optimized press works in ship‐hull forming. The combination of registration and comparison is applied to decide the shape equivalence of correspondent surfaces as well as to estimate the transform matrix between point sets where similarity is low. Experimental results show the capabilities of the registration on unfolding surface and curved surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.