Abstract

Recombinant protein produced from a cDNA cloned in our laboratory (UAT) functions in lipid bilayers as a urate transporter/channel. Because UAT is a galectin, a family of proteins presumed to be soluble, the localization and topology of UAT were assessed in living cells. UAT was targeted to plasma membrane in multiple epithelium-derived cell lines and, in polarized cells, was targeted to both apical and basolateral membranes. The amino and carboxy termini of UAT were both detected on the cytoplasmic side of plasma membranes, whereas cell surface biotinylation studies demonstrated that UAT is not merely a cytosolic membrane-associated protein but contains at least one extracellular domain. Madin-Darby canine kidney cells were shown both functionally and immunologically to contain an apparent homolog of UAT; however, transfection with UAT did not modify urate uptake. Because coimmunoprecipitation studies revealed that UAT is capable of forming both homo- and heteromultimers, it is proposed that monomers of endogenous channels are in part replaced by monomers of the protein expressed subsequent to transfection, thereby maintaining constancy of urate uptake at basal levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.