Abstract
When a circularly-symmetric light beam with optical vortex (OV) diffracts at an opaque screen with the sharp edge, the OV core is displaced from the beam axis and, in case of the m-charged incident OV, decomposed into |m| single-charged ones. By means of numerical simulations and based on examples of incident beams with topological charges |m| = 1, 2, 3 we show that, while the screen edge monotonously advances towards the beam axis, the OVs in the diffracted beam cross section move away from the incident beam axis along spiral-like trajectories. The trajectories contain fine structure details that reflect the nature and peculiar spatial configuration of the diffracting beam. For the Kummer beams’ diffraction, the trajectories contain self-crossings and regions of ‘backward’ rotation (loops); in the case of Laguerre–Gaussian beams, the trajectories are smoother. The numerical results are supported by analytical approximations and conform to experiments. The general shape of the trajectories and their local behavior show high sensitivity to the diffraction conditions (spatial structure of the diffracting beam, its disposition with respect to the screen edge, etc), which can be used in diverse metrological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.