Abstract

Graph convolutional networks (GCNs) have been widely used for representation learning on graph data, which can capture structural patterns on a graph via specifically designed convolution and readout operations. In many graph classification applications, GCN-based approaches have outperformed traditional methods. However, most of the existing GCNs are inefficient to preserve local information of graphs — a limitation that is especially problematic for graph classification. In this work, we propose a locality-preserving dense GCN with graph context-aware node representations. Specifically, our proposed model incorporates a local node feature reconstruction module to preserve initial node features into node representations, which is realized via a simple but effective encoder–decoder mechanism. To capture local structural patterns in neighborhoods representing different ranges of locality, dense connectivity is introduced to connect each convolutional layer and its corresponding readout with all previous convolutional layers. To enhance node representativeness, the output of each convolutional layer is concatenated with the output of the previous layer’s readout to form a global context-aware node representation. In addition, a self-attention module is introduced to aggregate layer-wise representations to form the final graph-level representation. Experiments on benchmark datasets demonstrate the superiority of the proposed model over state-of-the-art methods in terms of classification accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.