Abstract

Methods that a designer can use to optimize the placement of nodes in a large switching network to decrease the requirements on holographic interconnections are investigated. Localized interconnections between subdivided switches are combined with simpler global interconnections. The interconnections between subdivided switches can be implemented by use of metallic traces on smart-pixel arrays. The global interconnections would be provided by optical free-space techniques. Several advantages arise from this procedure: (1) The regular interconnection pattern is decomposed into several pipes (collection of light beams that form a complete pattern) without loss of functionality. (2) The interconnection pattern may be optimized by variation of the placement of the switches in a switching network (e.g., to obtain a minimum deflection angle). (3) The interconnection pattern may be adjusted to the need of an algorithm by an additional parameter (the dimension). The application to photonic switching networks and signal processing is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.