Abstract

We study the electronic properties of GaV4S8 (GVS) and GaTa4Se8 (GTS), two distant members within the large family of chalcogenides AM4X8, with A = {Ga, Ge}, M = {V, Nb, Ta, Mo} and X = {S, Se}. While all these compounds are Mott insulators, their ground states show many types of magnetic order, with GVS being ferromagnetic and GTS non-magnetic. Based on their band structures, calculated with density functional theory methods, we compute an effective tight-binding Hamiltonian in a localised Wannier basis set, for each of the two compounds. The localised orbitals provide a very accurate representation of the band structure, with hopping amplitudes that rapidly decrease with distance. We estimate the superexchange interactions and show that the Coulomb repulsion with Hund's coupling may account the for the different ground states observed in GVS and GTS. Our localised Wannier basis provides a starting point for realistic dynamical mean-field theory studies of strong-correlation effects in this family compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.