Abstract
We show that a relatively simple top-down fabrication can be used to locally deform germanium in order to achieve uniaxial tensile strain of up to 4%. Such high strain values are theoretically predicted to transform germanium from an indirect to a direct gap semiconductor. These values of strain were obtained by control of the perimetral forces exerted by epitaxial SiGe nanostructures acting as stressors. These highly strained regions can be used to control the band structure of silicon-integrated germanium epilayers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.