Abstract

In this work, BaTi1−xSnxO3 (BST) powders (x=0–0.95) were synthesized by a conventional mixed-oxide method. The phase information was investigated by a combination of X-ray diffraction and X-ray absorption spectroscopy techniques. The XRD measurements indicated the global phase transition from tetragonal to cubic perovskite structure. From the synchrotron X-ray Absorption Near-Edge Structure (XANES) measurements at the Ti K-edge and Sn L3-edge, it was seen that an increase of Sn content in BaTiO3 affected the phase transition behavior and local structure of BST. In addition, the local structure of Ba(Ti,Sn)O3 materials were experimentally determined and compared with that obtained from the simulation. The local structure obtained from the XANES technique provided additional structural information unavailable from XRD investigation. Finally, the phase transition behavior from relaxor ferroelectric to polar cluster in BST system was discussed and attributed mainly to the change in the local structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.