We propose a new hierarchy of semidefinite programming relaxations for inference problems. As test cases, we consider the problem of community detection in block models. The vertices are partitioned into $k$ communities, and a graph is sampled conditional on a prescribed number of inter- and intra-community edges. The problem of detection, where we are to decide with high probability whether a graph was drawn from this model or the uniform distribution on regular graphs, is conjectured to undergo a computational phase transition at a point called the Kesten-Stigum (KS) threshold. In this work, we consider two models of random graphs namely the well-studied (irregular) stochastic block model and a distribution over random regular graphs we'll call the Degree Regular Block Model. For both these models, we show that sufficiently high constant levels of our hierarchy can perform detection arbitrarily close to the KS threshold and that our algorithm is robust to up to a linear number of adversarial edge perturbations. Furthermore, in the case of Degree Regular Block Model (DRBM), we show that below the Kesten-Stigum threshold no constant level can do so. In the case of the (irregular) Stochastic Block Model, it is known that efficient algorithms exist all the way down to this threshold, although none are robust to a linear number of adversarial perturbations of the graph when the average degree is small. More importantly, there is little complexity-theoretic evidence that detection is hard below the threshold. In the DRBM with more than two groups, it has not to our knowledge been proven that any algorithm succeeds down to the KS threshold, let alone that one can do so robustly, and there is a similar dearth of evidence for hardness below this point.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call