Abstract
We study Noetherian local rings whose all formal fibers are of dimension zero. Universal catenarity and going-up property of the canonical map to the completion are considered. We present several characterizations of these rings, including a characterization of Weierstrass preparation type. A characterization of local rings with going up property by a strong form of Lichtenbaum–Hartshorne Theorem is obtained. As an application, we give an upper bound for dimension of formal fibers of a large class of algebras over these rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.