Abstract

This paper explores the application of the meshless Local Radial Basis Function Collocation Method (LRBFCM) for the solution of coupled heat transfer and fluid flow problems with a free surface. The method employs the representation of temperature, velocity and pressure fields on overlapping five-noded sub-domains through collocation by using Radial Basis Functions (RBFs). This simple representation is then used to compute the first and second derivatives of the fields from the respective derivatives of the RBFs. The energy and momentum equations are solved through explicit time integration scheme. For numerical efficiency, the Artificial Compressibility Method (ACM) with Characteristic Based Split (CBS) technique is firstly adopted to solve the pressure–velocity coupled equations. The performance of the method is assessed based on solving the classical two-dimensional De Vahl Davis steady natural convection benchmark problem with an upper free surface for Rayleigh number ranged from 103 to 105 and Prandtl number equals to 0.71.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.