Abstract

본 논문에서는 성별 인식을 위해 얼굴 영상을 효과적으로 기술하는 새로운 지역 패턴 방법 Local Prominent Directional Pattern (LPDP)를 제안한다. 제안된 LPDP 방법은 성별 인식에 중요한 얼굴 모양을 명확하게 구분하기 위해 주변 패턴이 누 적된 히스토그램을 통계적으로 분석하고 패턴 변화가 크게 발생하는 픽셀을 부호화 한다. 통계적인 정보를 사용하는 얼굴 모 양 구분에 중요한 뚜렷한 에지 방향 패턴 영역을 구분하는 중요한 정보를 제공 할 수 있다. 이는 뚜렷한 에지 방향 패턴이 나 타나는 영역의 주변도 유사한 에지 방향 패턴이 나타내기 때문에 통계적으로 특정 방향이 히스토그램에 많이 누적될 수 있기 때문이다. 또한 통계적인 방법은 주변 영역의 정보를 많이 수용하기 때문에 잡음으로 발생하는 에지 방향 변화 오류에 강력한 장점이 있다. 제안된 방법은 기존 방법들 보다 더 강력한 성별인식에 중요한 얼굴 모양 구분 능력을 보여주면서 국소적으로 발생하는 잡음에 견고함을 보여준다. 우리는 제안된 방법의 성능을 평가하기 위해 밝기, 표정, 연령, 머리 포즈가 변화하는 성 별 인식 데이터 셋에 다양한 실험을 실험 했고 기존 방법 보다 제안된 방법의 성능이 우수함을 입증했다.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.