Abstract
We propose to apply the recently introduced local projection stabilization to the numerical computation of the Oseen equation at high Reynolds number. The discretization is done by nested finite element spaces. Using a priori error estimation techniques, we prove the convergence of the method. The a priori estimates are independent of the local Peclet number and give a sufficient condition for the size of the stabilization parameters in order to ensure optimality of the approximation when the exact solution is smooth. Moreover, we show how this method may be cast in the framework of variational multiscale methods. We indicate what modeling assumptions must be made to use the method for large eddy simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.