Abstract
Consider the fixed regression model with random observation error that follows an AR(1) correlation structure. In this paper, we study the nonparametric estimation of the regression function and its derivatives using a modified version of estimators obtained by weighted local polynomial fitting. The asymptotic properties of the proposed estimators are studied: expressions for the bias and the variance/covariance matrix of the estimators are obtained and the joint asymptotic normality is established. In a simulation study, a better behavior of the Mean Integrated Squared Error of the proposed regression estimator with respect to that of the classical local polynomial estimator is observed when the correlation of the observations is large.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.