Abstract

This study investigates local out-of-plane deformation of a carbon fiber reinforced phenolic polymer ablator subjected to very rapid heating. Local out-of-plane deformation was measured using a three-dimensional digital image correlation technique at high temperatures. This was achieved by attaching high temperature resistant random patterns on the specimen surface using a ceramic bond. Additionally, blue filters intended for cutting strong infrared radiation from the specimen were also used. This study then discusses the mechanisms of the local out-of-plane deformation under rapid heating conditions in terms of carbonization, pyrolysis gas occurrence, gas pressure storage, and interlaminar debonding due to gas pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.