Abstract

Noise contamination in experimental data with underlying chaotic dynamics is one of the significant problems limiting the application of many nonlinear time series analysis methods. Although numerous studies have been devoted to the investigation of different aspects of noise-nonlinear dynamics interactions, the effects produced by noise on chaotic dynamics are not fully understood. This study sought to analyze the local effects produced by noise on chaotic dynamics with a smooth attractor. Local Wayland test translation errors were calculated for noise-induced Lorenz and Rössler chaotic models, and for experimental green light photoplethysmogram data. Results demonstrated that under noise induction, local regions on the chaotic attractor with high values of local translation error can be observed. This phenomenon was defined as the local noise sensitivity. It was found that for both models, local noise-sensitive regions were located close to the system's equilibrium points. Additionally, it was found that the reconstructed dynamics represent well the local noise sensitivity of the original dynamics. The concept of local noise sensitivity is expected to contribute to various applied studies, as it reveals regions of chaotic attractors that are sensitive to the presence of noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.