Abstract

We study the effect of disorder in strongly interacting small atomic chains. Using the Kotliar-Ruckenstein slave-boson approach, we diagonalize the Hamiltonian via scattering matrix theory. We numerically solve the Kondo transmission and the slave-boson parameters that allow us to calculate the Kondo temperature. We demonstrate that in the weak disorder regime, disorder in the energy levels of the dopants induces a nonscreened disorder in the Kondo couplings of the atoms. We show that disorder increases the Kondo temperature of a perfect chain. We find that this disorder in the couplings comes from a local distribution of Kondo temperatures along the chain. We propose two experimental setups where the impact of local Kondo temperatures can be observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.