Abstract

This study examines forecast accuracy associated with the forecast of 55 revenue data series of 18 local governments. The last 18 months (6 quarters; or 2 years) of the data are held-out for accuracy evaluation. Results show that forecast software, damped trend methods, and simple exponential smoothing methods perform best with monthly and quarterly data; and use of monthly or quarterly data is marginally better than annualized data. For monthly data, there is no advantage to converting dollar values to real dollars before forecasting and reconverting using a forecasted index. With annual data, naïve methods can outperform exponential smoothing methods for some types of data; and real dollar conversion generally outperforms nominal dollars. The study suggests benchmark forecast errors and recommends a process for selecting a forecast method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.