Abstract

In this paper, we consider the three‐dimensional generalized Boussinesq equations, a system of equations resulting from replacing the Laplacian − Δ in the usual Boussinesq equations by a fractional Laplacian ( − Δ)α. We prove the local existence in time and obtain a regularity criterion of solution for the generalized Boussinesq equations by means of the Littlewood–Paley theory and Bony's paradifferential calculus. The results in this paper can be regarded as an extension to the Serrin‐type criteria for Navier–Stokes equations and magnetohydrodynamics equations, respectively. Copyright © 2012 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.