Abstract

When a parameter of interest is defined to be a nondifferentiable transform of a regular parameter, the parameter does not have an influence function, rendering the existing theory of semiparametric efficient estimation inapplicable. However, when the nondifferentiable transform is a known composite map of a continuous piecewise linear map with a single kink point and a translation-scale equivariant map, this paper demonstrates that it is possible to define a notion of asymptotic optimality of an estimator as an extension of the classical local asymptotic minimax estimation. This paper establishes a local asymptotic risk bound and proposes a general method to construct a local asymptotic minimax decision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.