Abstract
In this paper, the impact of the strong Allee effect and ratio-dependent Holling–Tanner functional response on the dynamical behaviors of a predator–prey system is investigated. First, the positivity and boundedness of solutions of the system are proved. Then, stability and bifurcation analysis on equilibria is provided, with explicit conditions obtained for Hopf bifurcation. Moreover, global dynamics of the system is discussed. In particular, the degenerate singular point at the origin is proved to be globally asymptotically stable under various conditions. Further, a detailed bifurcation analysis is presented to show that the system undergoes a codimension-[Formula: see text] Hopf bifurcation and a codimension-[Formula: see text] cusp Bogdanov–Takens bifurcation. Simulations are given to illustrate the theoretical predictions. The results obtained in this paper indicate that the strong Allee effect and proportional dependence coefficient have significant impact on the fundamental change of predator–prey dynamics and the species persistence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.