Abstract

Coordination and local environment around Al in glasses and liquids is a long-standing question, which has been a controversial issue in geochemistry and glass science. Nuclear magnetic resonance at high-field (750 MHz) was employed to investigate the geochemically and industrially important CaO–Al 2O 3–SiO 2 system. We show that Al remains mainly in tetrahedral position in glasses, however, the presence of five-fold coordinated aluminum is the general rule throughout the ternary CaO–SiO 2–Al 2O 3 system, except for the low silica percalcic region. The proportion of five-fold (Al V) and six-fold (Al VI) coordinated Al was quantified to determine the effects of composition overall the peralkaline part. Moreover our results indicate that Al may occupy more polymerized positions than Si. These two findings do put new questions to the modeling/understanding of these glasses and their parent liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.