Abstract

A novel degradable, elastic, anionic, and linear polyurethane was synthesized from hexamethylene diisocyanate, polycaprolactone diol, and a bicine chain extender. The chemical structure, mechanical properties, degradation rate, and swelling ratio were characterized by comparing the polymer with a polyurethane containing a 2,2-(methylimino) diethanol chain extender. Due to the incorporation of negatively charged carboxyl side groups, the bicine extended polymers exhibited higher micro-phase separation, better mechanical properties in dry condition, and better sensitivity to environmental stimuli than controls, as demonstrated by its high swelling ratio at elevated pH, lower ionic strength, or higher temperature. The swelling ratio of membranes showed reversible change as the function of pH at 37 °C, the membranes becoming fully water soluble at pH above 8.3. Nile blue chloride and lysozyme were selected to study their release from this polymer. The release rates of both compounds were significantly influenced by the pH and ionic strength. The swelling ratios were also influenced by lysozyme loading at low pH. The pH dependent properties were used to fabricate scaffolds by drop-on-demand printing. Bicine extended polyurethanes may be of interest for possible drug delivery applications, customizable scaffold fabrication and other potential biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.