Abstract

I n this paper, the influence of applied load on the overall transverse mechanical properties of fiberreinforced composites with compliant interphases is examined from a micromechanical perspective. The composite is modeled by a regular hexagonal array of circular fibers in an infinite matrix. It is assumed that a thin reaction zone (intermolecular bonding at the fiber/matrix interface) establishes the bond between the fiber and matrix phases. The model of the present paper allows us to derive expressions for the overall elastic constants in the transverse plane as a function of applied load. The finite element method is used to evaluate these expressions, and the results are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.