Abstract

Load changing performance is significant for the application of proton exchange membrane fuel cells (PEMFCs). This paper compares experimental results of the hydrogen-air and hydrogen-oxygen PEMFC and analyzes their dynamic performance under various operating conditions. We use electrochemical impedance spectroscopy to investigate the intrinsic mechanism during load changing. Due to the higher oxygen concentration, the hydrogen-oxygen PEMFC responds faster (within 1 second) and operates more steadily than the hydrogen-air PEMFC (2-20 seconds). The experimental results show that the total polarization resistance of the hydrogen-air PEMFC and the Ohmic resistance of the hydrogen-oxygen PEMFC decrease dramatically with the appropriately increased operating temperature. Whereas at over-elevated operating temperature, the resistance value increases due to the dehydration of the membrane electrode assembly. Load changing performance can be improved by increasing operating pressure and relative humidity. Increased stoichiometry is beneficial for the hydrogen-air PEMFC, while the opposite trend is observed for the hydrogen-oxygen PEMFC. Novelty statement Comparison of experimental results of hydrogen-air and hydrogen-oxygen proton exchange membrane fuel cell (PEMFC), dynamic performance at start-up, and load changing performance are studied. Two PEMFCs' performances are quite different at various operating conditions. Overall, H2/O2 PEMFCs response faster (1 second) and operate more steadily than H2-air (2-20 seconds). Ohmic, polarization, and mass transfer resistance values are measured and analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.