Abstract

To study the load-carrying capacity of thin-walled box-section stub columns fabricated by high strength steel 18Mn2CrMoBA, uniaxial compression experiments of specimens with different geometrical dimensions were carried out. Compared with the predicted values by the AISI Code, the tested load-carrying capacities of the stub columns are much greater, which suggests that the existing effective width method should not be applicable for high strength steel stub columns. The finite element analysis based on ANSYS code was employed to simulate the deformation curves and predict the load-carrying capacities. The numerical values were generally in good agreement with the experimental values. Parameter analysis was performed to investigate the ultimate strength of the high strength steel stub column. The values obtained indicate that the width–thickness ratio of the flange and the section side ratio should be the main factors to decide the ultimate strength of the stub column. Taking the width–thickness ratio and the section side ratio as parameters, a formula to predict the loading capacity of the high strength steel stub column was put forward and proved to be effective by the tested and numerical values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.