Abstract

BackgroundJAK2/STAT3 signaling pathway plays an important role in keloid formation, but the upstream mechanism of their activation remains unclear. ObjectiveThis study aims to investigate the possible mechanism of lncRNA-ZNF252P-AS1 in keloid. MethodsThe differentially expressed genes in keloid and their upstream regulatory miRNAs and long non-coding RNAs (lncRNAs) were analyzed by bioinformatics database, and the targeting relationship was further verified by dual-luciferase reporter gene assay. LncRNA function as competitive endogenous RNA (ceRNA) in keloid was further verified by in keloid fibroblasts (KFs) and in nude mice with subcutaneous keloids. ResultsBTF3 expression was up-regulated in keloid tissues. The targeting relationship between BTF3 and miR-15b-5p was confirmed by dual-luciferase reporter gene assay. miR-15b-5p overexpression inhibited BTF3, Bcl-2, Cyclin D1, C-myc, Collagen I, MMP2, MMP9, N-cadherin, and ZEB2 expressions in KFs, inhibited cell proliferation and migration, while promoted E-cadherin levels. BTF3 overexpression reversed miR-15b-5p effects on KFs. Bioinformatics analysis as well as clinical and cellular experiments confirmed that the lncRNA ZNF252P-AS1 was highly expressed in keloid/KFs. Dual-luciferase reporter gene assays confirmed the targeting relationship between lncRNA ZNF252P-AS1 and miR-15b-5p. LncRNA ZNF252P-AS1 overexpression inhibited miR-15b-5p and E-cadherin levels, upregulated BTF3, Bcl-2, Cyclin D1, C-myc, Collagen I, MMP2, MMP9, N-cadherin, and ZEB2 expressions, increased cell proliferation and migration, and activated JAK2/STAT3 pathway, while miR-15b-5p overexpression reversed this effect. The in vivo results were consistent with in vitro results. In vivo experiments further confirmed that lncRNA ZNF252P-AS1 reduced keloid volume and weight. ConclusionlncRNA ZNF252P-AS1 is a potential target for keloid treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.