Abstract

Vascular smooth muscle cell (VSMC) accumulation and endothelial cell dysfunction are associated with pathogenesis of atherosclerosis. Long noncoding RNA taurine up-regulated gene 1 (TUG1) has been reported to play an important role in cardiovascular diseases, including atherosclerosis. However, the regulatory mechanism underlying TUG1 in atherosclerosis is far from understood. VSMC and human umbilical vein endothelial cells (HUVEC) stimulated by oxidized low-density lipoprotein (ox-LDL) were used as cellular model of atherosclerosis. Cell proliferation and apoptosis were detected by CCK-8, flow cytometry and Western blot. The expression levels of TUG1, microRNA (miR)-148b and insulin-like growth factor 2 (IGF2) were measured by quantitative real-time polymerase chain reaction or Western blot. The target association among TUG1, miR-148b and IGF2 was determined by luciferase reporter assay and RNA immunoprecipitation. The expression of TUG1 was increased in ox-LDL-treated VSMC and HUVEC. Silence of TUG1 inhibited proliferation and promoted apoptosis in ox-LDL-treated VSMC but induced proliferation promotion and apoptosis inhibition in HUVEC stimulated by ox-LDL. miR-148b was a target of TUG1 and its knockdown reversed the effect of TUG1 silence on proliferation and apoptosis of VSMC and HUVEC challenged by ox-LDL. IGF2 was a target of miR-148b and miR-148b regulated proliferation and apoptosis in ox-LDL-treated VSMC and HUVEC by targeting IGF2. TUG1 promoted IGF2 protein expression by sponging miR-148b. TUG1 knockdown attenuated ox-LDL-induced injury through regulating proliferation and apoptosis of VSMC and HUVEC by miR-148b/IGF2 axis, providing a novel mechanism for pathogenesis of atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.