Abstract
Endothelial progenitor cells (EPCs) have been reported to replace the damaged endothelial cells to repair the injured or dead endothelium. However, EPC senescence might lead to the failure in EPC function. Thus, developing an in-depth understanding of the mechanism of EPC senescence might provide novel strategies for related vascular disorders' treatments. Herein, nicotinamide phosphoribosyltransferase (NAMPT) overexpression could increase cell proliferation and suppress cell senescence in EPCs. miR-223 directly bound to the 3'-untranslated region of NAMPT to inhibit its expression, therefore modulating EPC proliferation and senescence through NAMPT and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling. Long noncoding RNA (lncRNA) GAS5 sponges miR-223, consequently downregulating miR-223 expression. GAS5 knockdown inhibited EPC proliferation and promoted senescence. GAS5 might serve as a competing endogenous RNA for miR-223 to counteract miR-223-mediated suppression on NAMPT, thus regulating EPC proliferation and senescence via the PI3K/AKT signaling pathway. In summary, our findings provide a solid experimental basis for understanding the role and mechanism of lncRNA GAS5/miR-223/NAMPT axis in EPC proliferation and senescence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.