Abstract

Excessive oxidative stress causes neuronal cell injury. Long non-coding RNA (LncRNA) EPIC1 (Lnc-EPIC1) is a MYC-interacting LncRNA. Its expression and potential functions in hydrogen peroxide (H2O2)-stimulated neuronal cells are studied. In SH-SY5Y neuronal cells and primary human neuron cultures, H2O2 downregulated Lnc-EPIC1 and key MYC targets (Cyclin A1, CDC20 and CDC45). Ectopic overexpression of Lnc-EPIC1 increased expression of MYC targets and significantly attenuated H2O2-induced neuronal cell death and apoptosis. Contrarily, Lnc-EPIC1 siRNA potentiated neuronal cell death by H2O2. MYC knockout by CRISPR/Cas9 method also facilitated H2O2-induced SH-SY5Y cell death. Significantly, MYC knockout abolished Lnc-EPIC1-induced actions in H2O2-stimulated neuronal cells. Together, these results suggest that Lnc-EPIC1 downregulation mediates H2O2-induced neuronal cell death.

Highlights

  • Neurons in the central nerve system (CNS) are vulnerable to reactive oxygen species (ROS) overproduction and excessive oxidative injury

  • In order to study the potential effect of Long non-coding RNA (LncRNA) EPIC1 (Lnc-EPIC1) in neuronal cells, differentiated SH-SY5Y neuronal cells were treated with hydrogen peroxide (H2O2)

  • LncRNAs are important for genomic imprinting, cell cycle progression, cell survival, differentiation and development [11, 12, 23]

Read more

Summary

Introduction

Neurons in the central nerve system (CNS) are vulnerable to reactive oxygen species (ROS) overproduction and excessive oxidative injury. It is possibly due to the high rate of oxygen consumption, enrichment of polyunsaturated fatty acids and defective Nrf cascade in neurons [1,2,3,4,5]. Excessive oxidative stress will induce profound neuronal cell injury, serving as a key pathogenesis mechanism of neurodegenerative diseases [1,2,3,4]. H2O2 overproduction can induce profound lipid peroxidation, DNA breaks, protein damage and eventually neuronal cell death and apoptosis [7, 9, 10]. Understanding the molecular mechanisms of H2O2induced neuronal cell death is vital for developing possible intervention strategies

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.