Abstract

SUMMARY Long-span bridge girders can show dangerous instable flutter vibrations caused by aerodynamic forces due to very strong winds. The control objective of flutter control is to enhance the structure-dependent and control-dependent critical wind speed of flutter onset. An active mass damper system with two eccentric rotational actuators (ERA) is presented for flutter control. By using a bridge girder model that moves in two degrees of freedom (DOFs) and is subjected to wind, the equations of motion of the controlled structure equipped with ERA are established. For determination of critical wind speed, a flutter analysis is carried out with the help of a numerical simulation scheme. Considering the plant without the aerodynamic forces and neglecting the interaction effects between the two ERA, the simplified control problem of one ERA is affine to the translational oscillator and rotational actuator (TORA) benchmark problem. LMI-based gain scheduling technique has been used successfully for the TORA and is implemented for flutter control with ERA in this research. For an example, the performance of the controlled bridge girder is investigated. Copyright © 2011 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.