Abstract

We address the issue of BRST symmetry breaking in the GZ model, a local, renormalizable, non-perturbative approach to QCD. Explicit calculation of several examples reveals that BRST symmetry breaking apparently afflicts the unphysical sector of the theory, but may be unbroken where needed, in cases of physical interest. Specifically, the BRST-exact part of the conserved energy-momentum tensor and the BRST-exact term in the Kugo-Ojima confinement condition both have vanishing expectation value. We analyze the origin of the breaking of BRST symmetry in the GZ model, and obtain a useful sufficient condition that determines which operators preserve BRST. Observables of the GZ theory are required to be invariant under a certain group of symmetries that includes not only BRST but also others. The definition of observables is thereby sharpened, and excludes all operators known to us that break BRST invariance. We take as a hypothesis that BRST symmetry is unbroken by this class of observables. If the hypothesis holds, BRST breaking is relegated to the unphysical sector of the GZ theory, and its physical states are obtained by the usual cohomological BRST construction. The fact that the horizon condition and the Kugo-Ojima confinement criterion coincide assures that color is confined in the GZ theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.