Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased drastically due to the global obesity pandemic but at present there are no approved therapies. Here, we aimed to revert high-fat diet (HFD)-induced obesity and NAFLD in mice by enhancing liver fatty acid oxidation (FAO). Moreover, we searched for potential new lipid biomarkers for monitoring liver steatosis in humans. We used adeno-associated virus (AAV) to deliver a permanently active mutant form of human carnitine palmitoyltransferase 1A (hCPT1AM), the key enzyme in FAO, in the liver of a mouse model of HFD-induced obesity and NAFLD. Expression of hCPT1AM enhanced hepatic FAO and autophagy, reduced liver steatosis, and improved glucose homeostasis. Lipidomic analysis in mice and humans before and after therapeutic interventions, such as hepatic AAV9-hCPT1AM administration and RYGB surgery, respectively, led to the identification of specific triacylglyceride (TAG) specie (C50:1) as a potential biomarker to monitor NAFFLD disease. To sum up, here we show for the first time that liver hCPT1AM gene therapy in a mouse model of established obesity, diabetes, and NAFLD can reduce HFD-induced derangements. Moreover, our study highlights TAG (C50:1) as a potential noninvasive biomarker that might be useful to monitor NAFLD in mice and humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.