Abstract
Targeted delivery of live microencapsulated bacterial cells has strong potential for application in treating various diseases, including diarrhea, kidney failure, liver failure, and high cholesterol, among others. This study investigates the potential of microcapsules composed of two natural polymers, alginate and chitosan (AC), and the use of these artificial cells in yogurt for delivery of probiotic Lactobacillus acidophilus bacterial live cells. Results show that the integrity of AC microcapsules was preserved after 76 h of mechanical shaking in MRS broth and after 12 h and 24 h in simulated gastric and intestinal fluids. Using an in vitro computer-controlled simulated human gastrointestinal (GI) model, we found 8.37 log CFU/mL of viable bacterial cells were present after 120 min of gastric exposure and 7.96 log CFU/mL after 360 min of intestinal exposure. In addition, AC microcapsules composed of chitosan 10 and 100 at various concentrations were subjected to 4-week storage in 2% milk fat yogurt or 0.85% physiological solution. It was found that 9.37 log CFU/mL of cells encapsulated with chitosan 10 and 8.24 log CFU/mL of cells encapsulated with chitosan 100 were alive after 4 weeks. The AC capsule composed of 0.5% chitosan 10 provided the highest bacterial survival of 9.11 log CFU/mL after 4 weeks. Finally, an investigation of bacterial viability over 72 h in different pH buffers yielded highest survival of 6.34 log CFU/mL and 10.34 log CFU/mL at pH 8 for free and AC-encapsulated cells, respectively. We conclude from these findings that encapsulation allows delivery of a higher number of bacteria to desired targets in the GI tract and that microcapsules containing bacterial cells are good candidates for oral artificial cells for bacterial cell therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.