Abstract

Random X inactivation represents a paradigm for monoallelic gene regulation during early ES cell differentiation. In mice, the choice of X chromosome to inactivate in XX cells is ensured by monoallelic regulation of Xist RNA via its antisense transcription unit Tsix/Xite. Homologous pairing events have been proposed to underlie asymmetric Tsix expression, but direct evidence has been lacking owing to their dynamic and transient nature. Here we investigate the live-cell dynamics and outcome of Tsix pairing in differentiating mouse ES cells. We find an overall increase in genome dynamics including the Xics during early differentiation. During pairing, however, Xic loci show markedly reduced movements. Upon separation, Tsix expression becomes transiently monoallelic, providing a window of opportunity for monoallelic Xist upregulation. Our findings reveal the spatiotemporal choreography of the X chromosomes during early differentiation and indicate a direct role for pairing in facilitating symmetry-breaking and monoallelic regulation of Xist during random X inactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.