Abstract

Recent research in Android device forensics has largely focused on evidence recovery from NAND flash memory. However, pervasive deployment of NAND flash encryption technologies and the increase in malware infections which reside only in main memory have motivated an urgent need for the forensic study of main memory. Existing Android main memory forensics techniques are hardly being adopted in practical forensic investigations because they often require solving several usability constraints, such as requiring root privilege escalation, custom kernel replacement, or screen lock bypass. Moreover, there are still no commercially available tools for acquiring the main memory data of smart devices. To address these problems, we have developed an automated tool, called AMD, which is capable of acquiring the entire content of main memory from a range of Android smartphones and smartwatches. In developing AMD, we analyzed the firmware update protocols of these devices by reverse engineering the Android bootloader. Based on this study, we have devised a method that allows access to main memory data through the firmware update protocols. Our experimental results show that AMD overcomes the usability constraints of previous main memory acquisition approaches and that the acquired main memory data of a smartphone or smartwatch can be accurately used in forensic investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.