Abstract

Lithocholic acid (LCA), one of the most common metabolic products of bile acids (BAs), is originally synthesized in the liver, stored in the gallbladder, and released to the intestine, where it assists absorption of lipid-soluble nutrients. LCA has recently emerged as a powerful reagent to inhibit tumorigenesis; however, the anti-tumor activity and molecular mechanisms of LCA in gallbladder cancer (GBC) remain poorly acknowledged. Here, we analyzed serum levels of LCA in human GBC and found that LCA was significantly downregulated in these patients, and reduced LCA levels were associated with poor clinical outcomes. Treatment of xenografts with LCA impeded tumor growth. Furthermore, LCA treatment in GBC cell lines decreased glutaminase (GLS) expression, glutamine (Gln) consumption, and GSH/GSSG and NADPH/NADP+ ratios, leading to cellular ferroptosis. In contrast, GLS overexpression in tumor cells fully restored GBC proliferation and decreased ROS imbalance, thus suppressing ferroptosis. Our findings reveal that LCA functions as a tumor-suppressive factor in GBC by downregulating GLS-mediated glutamine metabolism and subsequently inducing ferroptosis. This study may offer a new therapeutic strategy tailored to improve the treatment of GBC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.