Abstract

We have developed a straightforward printing method for preparation of a lithium secondary cell. LiCo1/3Ni1/3Mn1/3O2 and Li4Ti5O12 viscous printable pastes were used for the cathode and anode, respectively. Electrochemical measurement was used to characterize the capacitance of each cell, and field-emission scanning electron microscopy and particle size measurements were used to characterize particle size and morphology. These film electrodes functioned stably both in a standard liquid electrolyte and in an Li2SiO3 solid electrolyte, although the capacitance of the all-solid-state cell was significantly lower than that of the cell containing liquid electrolyte. When liquid electrolyte was used, the capacity decreased by 36% after 50 cycles. However, the capacity of 0.2 mA h/g remained almost the same even after 50 charge–discharge cycles, demonstrating the stability and strength of the all-solid-state lithium ion cell. It was also found that the cell resistance mostly arose from the electrode/electrolyte interface and not from the bulk electrolyte. Addition of a sol–gel to the solid electrolyte printable paste improved cell performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.