Abstract
LiTi2(PO4)3 (LTP) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) (S. g. R-3c) have been prepared using conventional ceramic and mechanical activation (MA) methods. It has been shown that preliminary mechanical activation of initial mixtures leads to different nature and amount of dielectric admixtures in the final product after heat treatment at 800–1000 °C as compared with ceramic method. Transport properties of as prepared materials have been studied by lithium ionic conductivity at d.c. and a.c. (complex impedance method), and 7Li NMR spin-lattice relaxation rate T1–1 measurements. Lithium ionic conductivity of mechanochemically prepared LTP and LATP was characterized by significant reduction of grain boundary resistance, especially for LTP, while the bulk conductivity and Li ion diffusion does not noticeably change. The activation energy of bulk conductivity and Li ion diffusion, i.e. short-range motion, appeared to be almost the same for all samples and was equal to ~0.20 eV. On contrary, the activation energy of d.c.-conductivity, i.e. long-range Li ion motion decreases from ~0.6 eV for ceramic samples to ~0.4 eV for samples prepared via mechanochemical route. It was proposed that MA leads to formation of nano-particulate high-conductive grain boundaries both in LTP and LATP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.